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Abstract

In this work we propose a family of multivariate distributions on n-balls, which is
closed with respect to forming marginal and conditional distributions. We analyze
its basic properties and construct a class of algorithms generating random vectors on
the surface and in the interior of n-balls. The numerical experiments showed that
the proposed method for generating uniformly distributed points in the interior of
n-balls is, to our best knowledge, more efficient than other published methods.
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Introduction

With the advent of computers into the science, new ways of solving practical problems
emerged. In mathematics, branches based on numerical computing started to develop
with full speed, among other things the simulation methods. We are often not able
to find solutions of real optimization problems (optimization of traffic lights, the
queueing theory, optimization of ”ugly” functions on bounded areas) in an analytic
form. For example in the queueing theory we have distributions for costumers arrivals,
time of servicing, patience of a customer, decision of changing a queue or leaving the
system. An approximately optimal solution can be found using simulations.

The prerequisite of the use of the simulation methods is to find effective ways
of generating elements from a particular set such that the elements have required
distribution.

In this work we focus our attention on multivariate distributions on balls, especially
on the uniform distribution on the surface and in the interior of the n-ball. Motivation
for this problem is, for example, optimization of functions on bounded sets. Since we
generate uniformly on the feasible set, the objective function needs not necessarily
be differentiable or continuous etc. This tasks can be divided into three groups with
increasing difficulty level:

• Optimization of functions on the surface and in the interior of n-balls:

min{f(x)|‖x‖ = r, r > 0},
min{f(x)|‖x‖ ≤ r, r > 0}.

In random search optimization methods we generate random points and com-
pare output values.

• Optimization on convex bounded areas (polytops as a special case): Let X be
an n-dimensional convex bounded area and let x0 be an initial interior point.
Generating from uniform distribution on the surface of the unit n-ball we get
a random direction s0. Let λ0 > 0 be such that x0 = x0 + λ0s

0 ∈ X . Let U0 be
uniformly distributed on the unit interval (0, 1). Setting x1 = U0x0 +(1−U)x0

(random point on a line segment) we get another interior point and we repeat
the procedure. Using this method we obtain a Markovian process which is
asymptoticaly uniformly distributed on X . The key factor here is the ability
to generate a random direction. Generating uniformly distributed points we
compare output values of the objective function.

1



2 INTRODUCTION

• Optimization on general bounded areas: The idea is the same as in the previous
case. The problem is if the area is concave and/or contains ”holes”. Then it
might happen that we generate on more than one line segment.

The most important fact about the mentioned algorithms is that they are polynomial,
in contrast to the classic rejection method, which is exponential. These methods are
described in [4, sec.5.13, p.384].

The main result of this work is to propose a new family of multivariate distributions
which is closed with respect to forming marginal and conditional distribution. As
we show, the family induces a class of algorithms, which also contains the method
analyzed in [17]. The class includes also a method for generating points uniformly
distributed in the interior of the unit n-ball that is, to our best knowledge, more
efficient than other published methods.

This work is organized as follows: Chapter 1 describes some univariate and mul-
tivariate distributions. We highlight the uniform distribution on the surface of the
unit n-ball (we often call unit n-sphere) and in the interior of the unit n-ball and
the Beta distribution with its properties. Chapter 2 is dedicated to basic methods of
generating special distribution families. Chapter 3 defines a special family of multi-
variate distributions and its applications to stochastic simulations. In Chapter 4 we
compare algorithms that result from this work with several algorithms known from
the literature. Chapter 5 contains some cited propositions, source codes and result
tables.

Notation

ξ̃ a general orthogonal projection of ξ

ξ̃V an orthogonal projection of ξ to a linear subspace V ;
Sn, Sn(ρ) the unit n-sphere and n-sphere with radius ρ, respectively

(SN = Sn, n = dim(N ));
Bn, Bn(ρ) the unit n-ball and n-ball with radius ρ;
ξ

d∼ η equivalency of ξ and η with respect to their distribution.
‖.‖ Euclidian vector norm, i.e. ‖x‖ =

√∑n
i=1 x2

i

All linear spaces are assumed to be vector linear spaces.



Chapter 1

Special Families of Random Variables
and Vectors

1.1 Uniform Distribution on the Unit n-Sphere and
in the Unit n-Ball

To describe a spherical distribution analytically is rather complicated. For example,
the unit n-sphere has dimension n− 1, so the measure of such set is zero. Therefore,
this distributions are defined on sets describing their ”character”. Let Sn be the unit
n-sphere, i.e

Sn = {x ∈ Rn : ‖x‖ = 1}.

Then the density function of the uniform distribution on the unit n-sphere relative
to the Lebesgue measure in Sn is

f(x) =
Γ(n

2
)

2π
n
2

, x ∈ Sn,

what represents the reciprocal value of the surface of the unit n-sphere. It means,
that the probability that ξ is to occur in the set Ω ⊆ Sn is the ratio of the surface of
Ω and the surface of the sphere (see fig. 1.1).

The unit n-ball

Bn = {x ∈ Rn : ‖x‖ ≤ 1},

compared with the n-sphere, has nonzero Lebesgue measure on Rn. Even though its
distribution is not easy to described analytically, its density is defined in Rn

f(x) =
Γ(n

2
+ 1)

π
n
2

, x ∈ Bn.

3
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CHAPTER 1. SPECIAL FAMILIES OF RANDOM VARIABLES AND

VECTORS

W

Figure 1.1: Uniform distribution on the unit sphere. The probability that the random
vector is to occur in Ω ⊆ Sn is equal to ratio between the surface of the area and the
sphere.

1.2 Exponential Distribution

We say that a random variable ξ has the exponential distribution with parameter λ
(denote ξ ∼ Exp(λ)), if the density of the uniform distribution on Bn is

f(x; λ) =
1

λ
e−

x
λ , x ≥ 0, λ > 0.

1.3 Normal Distribution

We say that a random variable ξ has the normal distribution with mean µ a variance
σ2 (denote ξ ∼ N(µ, σ2)), if its density function is

f(x; µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2 , σ > 0.

If µ = 0, σ = 1 we say the random variable has the standard normal distribution.

1.4 χ2 Distribution

Let ξ1, ..., ξn ∼ N(0, 1) be independent. Let

η =
n∑

i=1

ξ2
i .



1.5. Γ DISTRIBUTION 5

Then we say that η is Chi-square distributed with n degrees of freedom (notation
η ∼ χ2

n). The density function is

f(x; n) =
1

Γ(n
2
)2n/2

x
n
2
−1e−

x
2 , x > 0, n ∈ N.

1.5 Γ Distribution

We say that ξ has the Gamma distribution with parameters k and θ (notation ξ ∼
Γk,θ), if its density function is

f(x; k, θ) =
1

Γ(k)θk
xk−1e−

x
θ , x > 0, θ > 0, k > 0

where
Γ(z) =

∫ ∞

0

tz−1e−tdt,

is the so-called Gamma function. Note that the χ2
n distribution is only a special case

of the Γ distribution for k = n/2 and θ = 2.

1.6 Fisher-Snedecor’s F Distribution

Let η1 ∼ χ2
n, η2 ∼ χ2

m and

ζ =
η1/n

η2/m
.

Then we say, that ζ has F distribution with n and m degrees of freedom (notation
ζ ∼ Fn,m). The density function of F distribution is

f(x; n,m) =
( nx

nx+m
)

n
2 (1− nx

nx+m
)

m
2

xB(n
2
, m

2
)

,

where B is Beta function (see the next section).

1.7 Beta Distribution

The Beta distribution has been known since times of Sir Isaac Newton.
We say that ξ has the Beta distribution with parameters α and β (notation ξ ∼

Bα,β), if its density function is

f(x; α, β) =
1

B(α, β)
xα−1(1− x)β−1, 0 ≤ x ≤ 1, α > 0, β > 0,

where

B(α, β) =

∫ 1

0

xα−1(1− x)β−1,
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Figure 1.2: The probability density function and the cumulative distribution function
of Beta distribution for different parameters.

is the Beta function. In this work we also need to deal with a limit case for β = 0,
therefore we define this limit case of the Beta distribution as follows:

P (ξ = 1; β = 0) = 1 ∀α > 0.

Thus, for β = 0 we have a discrete distribution, which gives 1 with probability 1.
The advantages of the Beta distribution is variability and bounded support (the

unit interval can be scaled to any interval). Remark that

f(x; α, β) = f(1− x; β, α),

so, if ξ ∼ Bα,β, then 1− ξ ∼ Bβ,α.

Remark : For α = β = 1 we have the uniform distribution on (0, 1).

The Mean
E[ξ] =

α

α + β
,

the variance

Var[ξ] =
αβ

(α + β)2(α + β + 1)
,

and the characteristic function of the Beta distribution

E[eitξ] = 1F1(α; α + β; it),
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where

1F1(a; b; z) =
∞∑

n=0

(a)nz
n

(b)nn!
,

is the a confluent hypergeometric function of the first kind and (a)n = a(a + 1)(a +
2)...(a + n− 1) = Γ(a + n)/Γ(n). The kth central moment is given by

E[(ξ − E[ξ])k] =

(
− α

α + β

)k

2F1

(
−k, α; α + β;

α + β

α

)
,

where

2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)nzn

(c)nn!
,

is the Gauss hypergeometric function.
In Bayesian statistics we can observe an interesting property of the Beta distribu-

tion. Suppose ξ has the binomial distribution with parameters n a p, i.e.

P (ξ = k) =

(
n

k

)
pk(1− p)n−k,

and the prior distribution of p is the Beta distribution with parameters α, β > 0
(denote the density function π(θ)). The Bayes formula gives

fζ(x|η = y) =
fη(y|ζ = x)fζ(x)∫∞

−∞ fη(y|ζ = ν)fζ(ν)dν
,

where fζ(x) is the prior and fζ(x|η = y) is the posterior density function. Setting the
binomial probability mass function and the density function of the Beta distribution
into Bayes formula we get

π(θ|ξ = k) =

(
n
k

)
θk(1− θ)n−k 1

B(α,β)
θα−1(1− θ)β−1

∫∞
−∞

(
n
k

)
νk(1− ν)n−k 1

B(α,β)
να−1(1− ν)β−1dν

=
θk+α−1(1− θ)n−k+β−1

B(k + α, n− k + β)
,

i.e., the posterior distribution of parameter p is Beta.
There are many variations a and generalizations of the Beta distribution, e.g see

[12] or [5]. A way how to generalize the Beta distribution is the Gauss hypergeometric
distribution [2], defined by

f(x; α, β, γ, λ) =
1

B(α, β)2F1(γ, α; α + β; κ)
xα−1(1− x)β−1(1− κx)−γ, 0 ≤ x ≤ 1,

If γ = 0 or κ = 0, we have the density function of the Beta distribution with
parameters α, β.

Below we formulate a several of interesting propositions about the properties of
Beta distribution.

Lemma 1.7.1. Let ξk ∼ χ2
k. Then

ξm

ξm + ξn

∼ Bm
2

, n
2
.
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Proof. Denote γk,θ ∼ Γk,θ. According to [4, sec.3.15, p.200] it holds that

γα,1

γα,1 + γβ,1

=
1

1 +
γβ,1

γα,1

∼ Bα,β.

We want to prove
γ q

2
,2

γ q
2
,2 + γ p

2
,2

=
1

1 +
γ p

2
,2

γ q
2
,2

∼ B q
2
, p
2
.

The relationship is true if and only if the distribution of

ν =
γα,θ

γβ,θ

does not depend on parameter θ, i.e. the density function fν of ν does not depend
on θ. Using the formula for fraction of two random variables we get

fν(x; α, β, θ) =

∫ ∞

0

y
1

Γ(α)θα
(xy)α−1e−

xy
θ

1

Γ(β)θβ
yβ−1e−

y
θ dy

=
xα−1

Γ(α)Γ(β)θα+β

∫ ∞

0

y(α+β)−1e−
(1+x)y

θ dy

=
xα−1

Γ(α)Γ(β)θα+β
Γ(α + β)

(
θ

1 + x

)α+β

=
1

B(α, β)
xα−1(1 + x)−(α+β).

Theorem 1.7.2. Let s, p, q ∈ R, 0 < s < q < p a β1 ∼ Bq,p−q, β2 ∼ Bs,q−s be
independent and ν = β1.β2. Then

ν ∼ Bs,p−s.

Proof. The density function of product of two random variables ([14, p.188, (2)])
gives

fν(x; p, q, s) = K

∫ 1

x

(
x

y

)q−1 (
1− x

y

)p−q−1

ys−2(1− y)q−s−1dy, 0 ≤ x ≤ 1,

where 1
B(q,p−q)B(s,q−s)

. Multiplying fν by

xs−1(1− x)p−s−1

xs−1(1− x)p−s−1
,

we have

fν(x; p, q, s) =

Kxs−1(1− x)p−s−1

∫ 1

x

ys−2(1− y)q−s−1

xs−1(1− x)p−s−1

(
x

y

)q−1 (
1− x

y

)p−q−1

dy

︸ ︷︷ ︸
Ψ(x)

.
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We compute Ψ(x). First we have to eliminate x in integration boundaries.

Ψ(x) =

∫ 1

x

ys−2(1− y)q−s−1

xs−1(1− x)p−s−1

(
x

y

)q−1 (
1− x

y

)p−q−1

dy

substitution
z = 1−y

1−x

y = 1− z(1− x)
dy = −(1− x)dz

=

∫ 1

0

xq−szq−s−1[1− z(1− x)]s−p(1− z)p−q−1dz =

=

∫ 1

0

xq−sz(q−s)−1(1− z)(p−s)−(q−s)−1[1− (1− x)z]s−pdz.

Using [1, 15.3.1, p.558] (see Appendix)

Ψ(x) = B(p− q, q − s)xq−s
2F1(p− s, q − s, p− s, 1− x),

and [1, 15.1.8, p.556] (see Appendix)

Ψ(x) = B(p− q, q − s)xq−s[1− (1− x)]−(q−s).

Setting to fν

fν(x; p, q, s) =
1

B(s, p− s)
xs−1(1− x)p−s−1.

In [8, thm.1, p.402] is mentioned an equivalent theorem (without the proof, we
had to prove it ourselves) in the following form

β1 ∼ Ba,b, β2 ∼ Ba+b,c ⇒ β1.β2 ∼ Ba,b+c,

which we get if we set q := a + b, p− q := c, s := a, q − s := b in Theorem 1.7.2.

Lemma 1.7.3. Let ξ be a random variable, then

ξ ∼ Up
(0,1) ⇔ ξ ∼ B 1

p
,1

Proof. Let ξ = ηp, η ∼ U(0,1). Then

Fξ = Pr(ξ < x) = Pr(ηp < x) = Pr(η < x
1
p ) = Fη(x

1
p ),

fξ = fη(x
1
p )x

1
p
−1 1

p
= x

1
p
−1 1

p
, 0 ≤ x ≤ 1.

On the other hand

fB 1
p ,1

(x) =
1

B(1
p
, 1)

x
1
p
−1, 0 ≤ x ≤ 1.
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Denote βα,β independent Bα, β distributed random variables. We say that random
variables ξ, η are distributionally equivalent (denote ξ

d∼ η), if they have the same
density.

Now we compute βa,1.βb,1, without loss of generality a > b. Denote q = a, s =
b, p− q = 1, q − s = 1. Then

p− s = 2,

p = 1 + q = 1 + a,

s = b = p− 2 = 1 + a− 2 = a− 1 > 0.

According to Lemma 1.7.3 we get βa,1.βa−1,1
d∼ βa−1,2. Let a := a+1, then βa+1,1.βa,1

d∼
βa,2. It leads us to compute

βa+n,1.βa,n
d∼ βa+n,(a+n+1)−(a+n).βa,(a+n)−a.

Using Lemma 1.7.3 a we have the following equation

βa+n,1.βa,n
d∼ βa,n+1. (1.1)

Using equation (1.1) we decompose the following product

βa,n+1
d∼ βa+n,1.βa,n

d∼ βa+n,1(βa+n−1,1.βa,n−1)
d∼ βa+n,1.βa+n−1,1(βa+n−2,1.βa,n−2) = ... .

Induction gives the decomposition until βa,1. The result is summarized in the follow-
ing theorem.

Theorem 1.7.4 ([7]). Let a > 0 and

βi ∼ Ba+i,1,

be independent. Then

ν =
n−1∏
i=0

βi ∼ Ba,n, i = 0, 1, ..., n− 1 (1.2)

Using Lemma 1.7.3 we write (1.2) in the following form

ν =
n−1∏
i=0

η
1

a+i

i ∼ Ba,n, if ηi
iid∼ U(0,1). (1.3)



Chapter 2

Selected Topics from the Simulation
Methods

The basis of the simulation methods theory is ability to generate random numbers,
i.e. numbers uniformly distributed on (0, 1). So, in the following we assume we are
able to generate from U(0,1).

2.1 Inverse Transform Theorem

Since we are able to generate from U(0,1), the following theorem enables us to generate
from any univariate distribution.

Theorem 2.1.1. [9, chapt.2, s.21] Let ξ be a random variable with the cumulative
distribution function F (x) and set G(y) = sup{x : F (x) ≤ y} for y ∈ (0, 1). If
U ∼ U(0,1), then the random variable G(U) has cumulative distribution function F (x).

Proof. We show that F (x) ≤ y ⇔ x ≤ G(y). Let F (x) ≤ y, then directly from
the definition of G(y) results that x ≤ G(y). Let x ≤ G(y) and ε > 0. According
to definition of supreme exists zε that x − ε ≤ zε and F (zε) ≤ y. Since F is non-
decreasing, it holds that F (x−ε) ≤ F (zε) ≤ y. Since ε > 0 and distribution function
is left-continuous, it holds that F (x) ≤ y.

Now we compute

P (G(U) < x) = 1− P (G(U) ≥ x) = 1− P (U ≥ F (x)) = P (U < F (x)) = F (x).

Remark : If F is invertible, then G = F−1. Then we have ξ = F−1(U) has distribution
function F .

Theorem 2.1.2 (Exponential distribution generator). Let

ξ = −λ ln(U), U ∼ U(0,1).

Then ξ ∼ Exp(λ)

11
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Proof. Since the cumulative distribution function of exponential distribution is in-
vertible, we have

y = 1− e−
x
λ ,

1− y = e−
x
λ ,

ln(1− y) = −x

λ
,

x = −λ ln(1− y).

Using Inverse Transform Theorem we get

ξ = −λ ln(1− U∗) ∼ Exp(λ), U∗ ∼ U(0,1).

Obviously, if U∗ ∼ U(0,1), then U = 1− U∗ ∼ U(0,1), so

ξ = −λ ln(U), U ∼ U(0,1).

2.2 Simulation of Special Families of Random Vari-
ables

The inverse transform theorem gives us a general method of how to generate random
variables with distribution F . However, not all distribution functions are invertible
and/or easy-to-invert. As an example we have the normal distribution, where the
distribution function is rather complicated, since we integrate the Gaussian function,
and computing the value of the inverse function at a specified point is an even more
complicated problem. Unfortunately, this is not an exception. Many special distri-
butions do not have a ”nice” cumulative distribution function, we mention Beta, Γ,
χ2, Student’s t, or Fisher-Snedecor’s F distribution. One usually needs to explore
another ways of how to simulate random variables from these distributions. In this
section we mention those methods, which we use later.

2.2.1 Normal and Multidimensional Normal Distribution

[15, kap. 5, s.78-82] Assume that ξ a η are independent N(0, 1) distributed random
variables and let r and φ be polar coordinates of the vector (ξ, η)′. Then R2 = ξ2 +η2

and tan(Φ) = η/ξ. Since the components of (ξ, η)′ are independent, the joint density
function is

f(x, y) =
1√
2π

e−
x2

2
1√
2π

e−
y2

2 =
1

2π
e−

x2+y2

2 .

To determine the joint density function of (R2, Φ)′, denote f(r, φ), we transform the
variables

r = x2 + y2,

φ = arctan(y/x).
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φ

R

Figure 2.1: Polar coordinates of a random vector in R2.

The Jacobian matrix of this transformation is



2x 2y

− 1

1 + y2

x2

.
y

x2

1

1 + y2

x2

.
1

x


 ,

and Jacobian determinant is 2. So Jacobian of the inverse transformation is 1/2,
thus, the joint density of (R2, Φ)′ is

f(r, φ) =
1

2

1

2π
e−

r
2 , 0 < d < ∞, 0 < φ < 2π.

We observe that f(r, φ) is product of densities of uniform distribution on interval
(0, 2π), namely (2π)−1, and exponential distribution with parameter parameter λ = 2,
namely 1

2
e−r/2. So, R2 and Φ are independent, R2 ∼ Exp(2) and Φ ∼ U(0,2π). For

inverse transformation we get

ξ = R cos(Φ), (2.1)
η = R sin(Φ). (2.2)

Theorem 2.2.1 (Box-Muller generator). Let U1, U2 ∼ U(0,1) be independent. Then
for ξ, η defined by

ξ =
√
−2 ln(U1) cos(2πU2),

η =
√
−2 ln(U1) sin(2πU2),

(2.3)

it holds that ξ and η are independent and N(0, 1) distributed random variables.

Proof. Let U1, U2 ∼ U(0,1) Since R2 ∼ Exp(2), then according to Theorem 2.1.2 at the
page 11 it holds that R2 = −2 ln(U1), thus R =

√
−2 ln(U1). We have 2πU2 ∼ U(0,2π).

Setting into (2.1) and (2.2) we proved the theorem.

Remark : Transformations (2.3) are called Box-Muller transformations.

Since Box-Muller transformations require evaluating trigonometric functions, the
method in Theorem 2.2.1 is not very efficient. Denote A = 2U1 − 1, B = 2U2 − 1,
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(1, 1)(−1, 1)

(1,−1)(−1,−1)

(0, 0)
r##

##
r

A

B
R
φ

Figure 2.2: Uniform distribution in the square. If the realization of a random vector
occurs in the unit circle, we accept it, otherwise we reject it. (the so-called rejection
method).

where U1, U2 ∼ U(0,1) are independent. Then A,B ∼ U(−1,1) are independent. If the
realization of (A,B)′ occurs in the unit circle, i.e. A2 + B2 ≤ 1, then we accept
the pair, otherwise we generate a new pair. Using this rejection method we get
realizations, which are uniformly distributed in the unit circle. Denote R, Φ the
polar coordinates of this pair (see figure 2.2), it is obvious that R, Φ are independent,
furthermore R2 ∼ U(0,1) and Φ ∼ U(0,2π). We can compute sine and cosine of the
angle Φ as following

sin(Φ) = B√
A2+B2 ,

cos(Φ) = A√
A2+B2 .

(2.4)

Let U ∼ U(0,1). Setting (2.4) into Box-Muller generator we get the following equations

ξ =
√
−2 ln(U)

A√
A2 + B2

,

η =
√
−2 ln(U)

B√
A2 + B2

.

Unfortunately we have to generate 3 random variables uniformly distributed on (0, 1).
Since the angle Φ and radius R are independent and R2 ∼ U(0,1), we can use R2 instead
of U and we have

ξ =

√
−2 ln(R2)

R2
A,

η =

√
−2 ln(R2)

R2
B.

Algorithm 2.2.2 (Polar method). The algorithm below generates a pair ξ, η of
independent N(0, 1) distributed random variables.

function: [ξ, η] = randN01()
(P1) Generate U1, U2 ∼ U(0,1)
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A := 2U1 − 1, B := 2U2 − 1
R2 := A2 + B2

if R2 > 1
goto P1

end

ξ =

√
−2 ln(R2)

R2
A

η =

√
−2 ln(R2)

R2
B

Remark : Let ξ ∼ N(0, 1). If we want to generate a realization ν ∼ N(µ, σ2), then we
set ν = σξ + µ. Then E[ν] = E[σξ + µ] = σE[ξ] + µ = µ and Var[ν] = Var[σξ + µ] =
σ2Var[ξ] = σ2.

Remark : The Box-Muller generator gives ξ2 +η2 = −2 ln(U), U ∼ U(0,1). Since ξ and
η are independent, then ν = ξ2 + η2 ∼ χ2

2. So −2 ln(U) generates from χ2
2.

[4, sec.3.24, p.223] Suppose we want to generate from Nn(µ,Σ). Let ξ ∼ Nn(0, I)
and Σ = CC′. Then Cξ + µ ∼ Nn(0, I). Now we show a technique how to generate
from Nn(µ,Σ) efficiently.

Algorithm 2.2.3. This algorithm computes such lower triangular matrix C that
Σ = CC′. We denote Σ = (σij), C = (cij) ∈ Rn×n.

function: [C] = Cholesky(Σ)
a :=

√
σ11

i := 1
until i > n

ci1 := σi1/a
i := i + 1

end c22 :=
√

σ22 − c2
21

i := 3
while i ≤ n

j := 2
while j < i

cij := (σij −
∑j−1

m=1 cimcjm)/cjj

j := j + 1
end

cii :=
√

σii −
∑i−1

j=1 c2
ij

i := i + 1
end

Remark : Since C is a triangular matrix, it is more efficient to compute Cξ, compared
with non-triangular matrices.
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Figure 2.3: The density function of N2(0, I) and its contours. Contours are concentric
circles (t.j. 2-spheres).

2.2.2 Uniform Distribution on the Unit n-Sphere and in the
Unit n-Ball

[4, sec.3.29, p.234] Let ξ = (ξ1, ..., ξn)′ be uniformly distributed on the unit n-sphere

Sn = {x ∈ Rn : x2
1 + ... + x2

n = 1}.
Therefore, the density function of this vector is

f(x) =
Γ(n

2
)

2π
n
2

, x ∈ Sn,

which is reciprocal value of the surface of the unit n-sphere. Since ξ has unit length
and uniformly distributed direction, we can see the relationship with the normal
distribution. Standard normal distribution is radial symmetric (see fig. 2.3). So, if
η ∼ Nn(0, I) then it has uniformly distributed direction, therefore we exploit this
property to generate from USn .

Theorem 2.2.4. Let ξ ∼ Nn(0, I). Then

ξ

‖ξ‖ ∼ USn .

Remark : Since ξ/‖ξ‖ ∼ USn , then rξ/‖ξ‖ ∼ USn(r)

Now we show, how to generate uniformly on the unit n-ball. Let η ∼ U
1
n

(0,1) be the
distribution of radius. Then the density function of η is

fη(y) = nyn−1, 0 ≤ y ≤ 1.

The surface of n-sphere with radius 0 < y < 1 is

f(x|y) =
Γ(n

2
)

2π
n
2 yn−1

,
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so the joint distribution function is

f(x|y)fη(y) =
Γ(n

2
)

2π
n
2 yn−1

nyn−1 =
Γ(n

2
)n

2

π
n
2

=
Γ(n

2
+ 1)

π
n
2

,

and that is the volume of the unit n-ball Bn = {x ∈ Rn : ‖x‖ ≤ 1}.
Theorem 2.2.5. Let U ∼ U(0,1), ξ ∼ Nn(0, I) be independent. Then

U
1
n

ξ

‖ξ‖ ∼ UBn .

Remark : Similarly as for the uniform distribution on the sphere, it holds rU
1
n ξ/‖ξ‖ ∼

UBn(r).
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Chapter 3

BB Distribution Family and its
Applications

The content of this chapter is based on [7].

3.1 Uniform Distribution on the Unit n-Sphere and
its Projection to a Linear Space

Theorem 3.1.1. Let ν be a random vector uniformly distributed on the unit n-sphere
Then ‖ν̃‖2 ∼ Bm

2
, n−m

2
, where ν̃ is a projection of the vector ν to a m-dimensional

linear space.

Proof. Proof is divided into two parts. First, we prove the theorem for spaces gen-
erated by m columns ei of In. Then, using a suitable transformation, we generalize
the theorem for any linear subspace.

Let ξ ∼ Nn(0, I). Then ([4, sec.3.29, p.234])

ν =
ξ

‖ξ‖ ∼ USn ,

where Sn = {x ∈ Rn : ‖x‖ = 1} is the unit n-sphere. Denote N = {1, 2, ..., n}. To
project to a subspace V generated by m columns of In, whose indexes compose set
M ⊂ N, is to keep any of m components and zero the rest n−m components. Denote
eξ
‖ξ‖ projection ξ

‖ξ‖ to V . The squared norm of eξ
‖ξ‖ satisfies

∥∥∥∥∥
ξ̃

‖ξ‖

∥∥∥∥∥

2

=
‖ξ̃‖2

‖ξ‖2
=

∑
i∈M ξ2

i∑
i∈N ξ2

i

=

∑
i∈M ξ2

i∑
i∈M ξ2

i +
∑

i∈N−M ξ2
i

. (3.1)

Since ξ ∼ Nn(0, I), then ξi ∼ N(0, 1) and all components are independent. Thus
η1 =

∑
i∈N−M ξ2

i ∼ χ2
n−m and η2 =

∑
i∈M ξ2

i ∼ χ2
m. Furthermore, η1 and η2 are

19
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Figure 3.1: Realizations of uniform distribution on the unit sphere (crosses), their
projections to different 2-dimensional linear spaces (dots) and the corresponding his-
tograms of squared norm of the projections with inserted density function of B1, 1
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independent, because are composed of disjoint sets of N(0, 1) distributed random
variables. Applying Lemma 1.7.1 to (3.1) we get

‖ν̃‖2 =

∥∥∥∥∥
ξ̃

‖ξ‖

∥∥∥∥∥

2

∼ Bm
2

, n−m
2

Note that the distribution depends only on dimensions of sphere and linear space,
respectively, and not on the values of components.

Now, we generalize the first part of the proof. Let Q be an orthogonal matrix,
then

‖ν̃‖2 ∼ Bm
2

, n−m
2
⇔ ‖Qν̃‖2 ∼ Bm

2
, n−m

2
. (3.2)

Denote V = (v1,v2, ...,vm) vectors generating V . Without loss of generality sup-
pose v1,v2, ...,vm are orthonormal and linearly independent, otherwise we use Gram-
Schmidt’s orthonomalization process and drop the dependent vectors. We have to
find such Q, that

Im×n = QV.

Since Q−1 = Q′, we have
Q′Im×n = V,

i.e., the first m columns of Q′ are composed of V. Complete the matrix Q′ to full
basis a transposition we get required transformation matrix. It is (geometrically)
obvious that the projection to V and subsequent transformation by Q is equivalent
to the transformation by Q and consequent projection to QV = span(Im×n), because
it is just ”rotating the problem”. So ‖ν̃‖2 = ‖Qν̃V‖2 = ‖Q̃νI‖2.

According to the first part it holds ‖Q̃ν‖2 ∼ Bm
2

, n−m
2

, so ‖ν̃‖2 ∼ Bm
2

, n−m
2

.

Lemma 3.1.2. Let r, m, n ∈ N, 0 < r < m < n, ν be uniformly distributed on the
unit n-sphere and M and R be an m- and r-dimensional linear space, respectively,
R ⊂M. Then ∥∥∥(̃ν̃M)R

∥∥∥
2

∼ B r
2
, n−r

2
.

Proof. A Projection of a vector toM and consequently to R gives projection directly
to R, i.e. (̃ν̃M)R = ν̃R, thus, ‖(̃ν̃M)R‖2 = ‖ν̃R‖2 ∼ B r

2
, n−r

2
.

Theorem 3.1.3. Let r,m, n ∈ N, 0 < r < m < n and β1 ∼ Bm
2

, n−m
2

, β2 ∼ B r
2
, m−r

2
be

independent. Then the random variable ν = β1.β2 satisfies

ν ∼ B r
2
, n−r

2
.

Proof. After projecting ξ uniformly distributed on the unit n-sphere to an m-dimensional
linear space M we get ϑ = ξ̃M, a vector with uniformly distributed direction and√

Bm
2

, n−m
2

distributed norm. We can write

ϑ = ζ.η, ‖η‖ = 1, η ∼ USM , ζ ∼
√

Bm
2

, n−m
2

, (3.3)



22 BB DISTRIBUTION AND ITS APPLICATION

where SM is the unit m-sphere in M.
Let R be an r-dimensional space. Following the Lemma 3.1.2 we have

ξ̃R = ϑ̃R = ζ.η̃R.

Theorem 3.1.1 gives ν = ‖ξ̃R‖2 ∼ B r
2
, n−r

2
a ν = ‖ζ.η̃R‖2 = ζ2‖η̃R‖2, where ζ2 ∼

Bm
2

, n−m
2

a ‖η̃R‖2 ∼ B r
2
, m−r

2
.

We remark that Theorem 1.7.2 at the page 8 is the generalization of this particular
case.

3.2 BB Family of Random Vectors

We establish the following distribution family of random vectors in an n-dimensional
linear space N .

Definition 3.2.1. Let ν be a random vector in an n-dimensional linear space N
having the form

ν = rζ.ξ, ζ ∼
√

Bn
2

, d
2
, ξ ∼ USN , d ≥ 0,

ζ, ξ are independent and r > 0 real. Then we denote

ν ∼ BB
n (r, d),

and say that ν has n-dimensional BB distribution with radius r and parameter d.

Remark : As shown below, the from is derived from the beta-product property. The
parameter r is more technical and enables us to generalize the family to the ball with
radius r.

Let ν ∼ BB
n (r, d), according to (3.3) at the page 3.3 it is obvious that it is the

projection of a vector uniformly distributed on the (n + d)-sphere with radius r.
The projection ν̃M of ν to an m-dimensional linear space M (i.e. assembling the
projections, since ν represents a projection) has the form

ν̃M = rζ.η.ξM, η ∼
√

Bm
2

, n−m
2

, ξM ∼ USM ,

what is (using Theorem 1.7.2 at the page 1.7.2). equivalent with

ν̃M = rζM.ξM, ζM ∼
√

B
m
2

,
edM
2

, ξM ∼ USM ,

where d̃M = d + (n−m) ≥ 0, so we can write

ν̃ ∼ BB
m(r, d̃M).

This shows that ν and its projection ν̃M belong to the same distribution family.
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Theorem 3.2.2. The distribution family BB
n (r, d) of random vectors is closed with

respect to the projection to any m-dimensional (m ≤ n) linear subspace. After the
projection, the second parameter is equal to d + n−m.

Lemma 3.2.3. Let ν ∼ BB
n (r, d). Then (νi1 , ..., νim)′ ∼ BB

m(r, d + n−m).

Theorem 3.2.4. The probability density function of BB
n (r, d) distribution is

fBB
n
(x; r, d) =

Γ(n
2
)

π
n
2 rnB(n

2
, d

2
)

(
1− ‖x‖2

r2

) d
2
−1

, 0 ≤ ‖x‖ ≤ r,

which is equal to

fBB
n
(x; r, d) =

Γ(n+d
2

)

π
n
2 rnΓ(d

2
)

(
1− ‖x‖2

r2

) d
2
−1

, 0 ≤ ‖x‖ ≤ r.

Proof. Since ν ∼ BB
n (r, d) has uniformly distributed direction and r

√
Bn

2
, d
2
dis-

tributed norm, contour sets of this distribution must be concentric spheres, i.e. the
distribution is radial symmetric. The value of the density function on the sphere with
radius ρ is Kf ∗(ρ; r, d), where f ∗ is a function and K is the normalization constant.
Hence the density function of BB

n (r, d) must have the form

fBB
n
(x) = Kf ∗(‖x‖; r, d).

Our goal is to find f ∗. Let F‖ν‖(ρ) be the probability that a realization of vector ν
is to occur in the ball Bn = {x ∈ Rn : ‖x‖ < ρ}. Then

F‖ν‖(ρ) = Pr(‖ν‖ < ρ), ‖ν‖ ∼ r
√

Bn
2

, d
2
, (3.4)

and, on the other hand,

F‖ν‖(ρ) =

∫

Bn(ρ)

Kf ∗(‖x‖; r, d)dx. (3.5)

The relationship (3.4) implies

f‖ν‖(ρ) =
dF‖ν‖

dρ
=

2

rnB(n
2
, d

2
)
ρn−1

(
1− ρ2

r2

) d
2
−1

.

Together with (3.5) we get that f ∗ is the solution of the following equation

2

rnB(n
2
, d

2
)
ρn−1

(
1− ρ2

r2

) d
2
−1

=
∂

∂ρ

(∫

Bn(ρ)

Kf ∗(‖x‖; r, d)dx

)
. (3.6)
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First, we compute the right side of the equation. Using n-dimensional spherical
coordinates ([3, p.65]) we get

∫

Bn(ρ)

f ∗(‖x‖; r, d)dx

=

∫ ρ

R=0

∫ π

ϕ1=0

...

∫ π

ϕn−2=0

∫ 2π

θ=0

f ∗(R; r, d)Rn−1

n−2∏

k=1

sink(ϕn−1−k)dRdϕ1...dϕn−2dθ

=

∫ ρ

R=0

f ∗(R; r, d)Rn−1dR

∫ π

ϕ1=0

...

∫ π

ϕn−2=0

∫ 2π

θ=0

n−2∏

k=1

sink(ϕn−1−k)dϕ1...dϕn−2dθ

=

(
2π

n−2∏

k=1

∫ π

0

sink(ϕn−1−k)dϕn−1−k

)

︸ ︷︷ ︸
S(n)

∫ ρ

R=0

f ∗(R; r, d)Rn−1dR

Since it is the function of the upper boundary, then

∂

∂ρ

(
S(n)

∫ ρ

R=0

f ∗(R; r, d)Rn−1dR

)
= S(n)f ∗(ρ; r, d)ρn−1. (3.7)

Setting (3.7) to (3.6) we get

2

rnB(n
2
, d

2
)
ρn−1

(
1− ρ2

r2

) d
2
−1

= KS(n)f ∗(ρ; r, d)ρn−1,

using some transformations

2

S(n)rnB(n
2
, d

2
)

(
1− ρ2

r2

) d
2
−1

= Kf ∗(ρ; r, d).

Thus

fBB
n
(x; r, d) =

2

S(n)rnB(n
2
, d

2
)

(
1− ‖x‖2

r2

) d
2
−1

, 0 ≤ ‖x‖ ≤ 1.

We need S(n) to be in an acceptable form. It holds
∫ π

0

sinn(ϕ)dϕ =
√

π
Γ(n+1

2
)

Γ(n
2

+ 1)
=
√

π
Γ(n+1

2
)

Γ(n+2
2

)
. (3.8)

Then

S(n) = 2π
n−2∏

k=1

√
π

Γ(k+1
2

)

Γ(k+2
2

)
= 2π

n
2
Γ(2

2
)

Γ(3
2
)
.
Γ(3

2
)

Γ(4
2
)
...

Γ(n−2
2

)

Γ(n−1
2

)
.
Γ(n−1

2
)

Γ(n
2
)

=
2π

n
2

Γ(n
2
)
.

Setting S(n) to fBB
n
we have

fBB
n
(x; r, d) =

Γ(n
2
)

π
n
2 rnB(n

2
, d

2
)

(
1− ‖x‖2

r2

) d
2
−1

=
Γ(n+d

2
)

π
n
2 rnΓ(d

2
)

(
1− ‖x‖2

r2

) d
2
−1

, 0 ≤ ‖x‖ ≤ 1.
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Figure 3.2: Probability density function of BB distribution for n = 2, r = 1 and
different values of d.

Two cases of parameter d have an interesting interpretation. If d = 0 (limit case
of Beta distribution, the density function fails), we project the uniform distribution
on the sphere into the original space, i.e. the projection is the uniform distribution
on the sphere. It means that ν ∼ USN (r). If d = 2, then, according to Lemma 1.7.3,
we get

ν ∼ rη
1
n ξ, η ∼ U(0,1), (3.9)

i.e. ν is uniformly distributed on the n-ball with radius r ([4, sec.3.29, p.234]). Note,
if we set d = 2 into fBB

n

fBB
n
(x; r, d = 2) =

Γ(n+2
2

)

π
n
2 rnΓ(2

2
)

=
Γ(n+2

2
)

π
n
2 rn

=
1

Vnrn
=

1

Vn(r)
,

where Vn(r) is the volume of the n-ball with radius r.
For parameter 0 < d < 2 the exponent d

2
− 1 is negative, thus at the support

boundary the value of the density function goes to infinity.
In the figure 3.2 is depicted the density function of BB

n (r, d), n = 2, r = 1, distri-
bution for different values of d. To cope with unboundedness for d = 1 we limited
the maximal value.

Corollary 3.2.5. Let ξ ∼ Nn+k(0, I) and ν =
eξ
‖ξ‖ , where ξ̃ is a vector composed of

n components of ξ. Then ν ∼ BB
n (1, k). For k = 2 we have uniform distribution in

the unit ball.

Remark : Corollary 3.2.5 proposes an efficient algorithm for generating from the inte-
rior of n-ball, if we have physical N(0, 1) generator.

Proof. Since ξ/‖ξ‖ ∼ USn+k
. It is easy to see that ξ̃ is projection of n+k-dimensional

vector ξ to n-dimensional linear space span(e1, ..., ek), thus it is the projection of
ξ/‖ξ‖. Using Lemma 3.2.3 we prove the corollary.
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Remark : Projecting uniform distribution on the unit 3-sphere to axis OZ we have the
uniform distribution on (−1, 1) (in OZ direction). Remark that the probability that

1

h

Figure 3.3: Spherical cap.

a random vector occurs on the spherical cap with height h (denote Cap(h)) is the
surface of the cap (SCap(h) = 2πh) divided by the surface of the sphere (SSph = 4π),
i.e.

P (ξ ∈ Cap(h)) =
SCap(h)

SSph

=
2πh

4π
=

h

2
.

On the other hand, the density function of U(−1,1) is f(x) = 1/2, x ∈ (−1, 1) and the
probability that a realization occurs in the interval I = (1− h, 1) of length h is h/2,
too.

We also have, that the surface of the cap is proportional to its height, i.e

SCap(h) = h
SSph

2

Below we describe some basic properties of BB
n (r, d) distribution.

Theorem 3.2.6. Let ν ∼ BB
n (r, d). Then

1. E[ν] = 0,

2. components νi, i = 1, ..., n, are dependent and Cov[νi, νj] = 0 for i 6= j,

3. Var[ν] = r2

n+d
I.

Proof. 1 is true because the distribution is radial symmetric.
The radial symmetry implies that any permutation of components gives the same

random vector. Since E[νi] = 0 it holds Cov[νi, νj] = E[νiνj], i 6= j. If 2 holds for the
first and the second component, then radial symmetry implies that it holds for any
two components. Thus, to prove 2 we have to show that E[ν1ν2] = 0, i.e.

0 = Cov[ν1, ν2] =

∫

Bn(ρ)

ν1ν2

Γ(n+d
2

)

π
n
2 rnΓ(d

2
)

(
1− ‖ν‖2

r2

) d
2
−1

dν.
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Using n-spherical coordinates we get

Cov[ν1, ν2] = K

∫ ρ

0

Rn+1

(
1− R2

r2

) d
2
−1

dR

n−4∏

k=1

∫ π

0

sink(ϕn−1−k)dϕn−1−k

∫ π

0

sinn−1(ϕ1) cos(ϕ1)dϕ1

︸ ︷︷ ︸
=0, for n>0

∫ π

0

sinn−3(ϕ2) cos(ϕ2)dϕ2

= 0

Since BB
n (r, d) 6 d∼ Nn(0, σ2(n, r, d)I), due to Herschel-Maxwell theorem, the distribu-

tion must have dependent components.
We prove 3 in the following way. The radial symmetry and zero covariance of the

components give Var[ν] = σ2(n, r, d)I, i.e. all components have the same variance
σ2(n, r, d) that depends on n, r and d. Projecting ν to a one-dimensional space we
get random variable

ξ ∼ r
√

B 1
2
, d+n−1

2

d∼ BB
1 (r, d + n− 1),

ξ2 ∼ r2B 1
2
, d+n−1

2
.

Since E[ξ] = 0, then Var[ξ] = E[ξ2] is the variance of one component. Using the mean
of the Beta distribution we get

σ2(n, r, d) = Var[ξ] = E[ξ2] = r2
1
2

1
2

+ d+n−1
2

=
r2

n + d
.

Corollary 3.2.7. Let r > 0 be fixed. Then for d → ∞ the BB
n (r, d) distribution

converges to Dirac distribution in 0 ∈ Rn.

Theorem 3.2.8. Let ν ∼ BB
n (r, d), ν = (ν1,ν2)

′, and ν1,x ∈ Rm, ν2,y ∈ Rn−m.
Then

Pr(ν1 < x|ν2 = y) =

∫ x1

−∞
...

∫ xm

−∞
fBB

n
(ξ; r, d|y)dξ,

where

fBB
n
(ξ; r, d|y) =

Γ(m
2
)

π
m
2 B(m

2
, d

2
)
.

(
1− ‖y‖2

r2 − ‖ξ‖2
r2

) d
2
−1

(
1− ‖y‖2

r2

) d+m
2
−1

.

Proof. According to [13, sec.1.3, p.13], for the conditional density function it holds

fBB
n
(x; r, d|y) =

fBB
n
((x,y); r, d)∫

Bm(1−‖y‖2)
fBB

n
((u,y); r, d)du

.
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Since the denominator stands for the marginal density funcion of the last n − m
components, we use projection to reduce m dimensions. Therefore

fBB
n
(x; r, d|y) =

Γ(n+d
2

)

π
n
2 rnΓ(d

2
)

(
1− ‖x‖2

r2 − ‖y‖2
r2

) d
2
−1

Γ(n−m+m+d
2

)

π
n−m

2 rn−mΓ(d+m
2

)

(
1− ‖y‖2

r2

) d+m
2
−1

=
Γ(d+m

2
)

π
m
2 rmΓ(d

2
)
.

(
1− ‖x‖2

r2 − ‖y‖2
r2

) d
2
−1

(
1− ‖y‖2

r2

) d+m
2
−1

.

In the following theorem we show that conditional distribution of BB
n (r, d) belongs

into the same family.

Theorem 3.2.9. Suppose x, y, ν satisfy the assumptions in Theorem 3.2.8, ν2 = y
and ‖y‖ < r. Then

ν1 ∼ BB
m

(√
r2 − ‖y‖2, d

)
.

Proof. The density function of ν1 is fBB
n
(x; r, d|y). If ‖y‖ < r, then 1r

1− ‖y‖2
r2

is

defined, and the density function of 1r
1− ‖y‖2

r2

ν1 is

f(x;y, d) =

(√
1− ‖y‖2

r2

)m

fBB
n

(√
1− ‖y‖2

r2
x; r, d|y

)

=

(
1− ‖y‖2

r2

)m
2 Γ(m

2
)

π
m
2 rmB(m

2
, d

2
)
.

(
1− ‖y‖2

r2

) d
2
−1 (

1− ‖x‖2
r2

) d
2
−1

(
1− ‖y‖2

r2

) d+m
2
−1

=
Γ(m

2
)

π
m
2 rmB(m

2
, d

2
)

(
1− ‖x‖2

r2

) d
2
−1

.

So 1r
1− ‖y‖2

r2

ν1 ∼ BB
m(r, d), and we have ν1 ∼ BB

m

(
r
√

1− ‖y‖2
r2 , d

)
.

The shape of the density function of the BB for greater values of the parameter d is
similar to the density of normal distribution. Let ν ∼ BB

n (
√

n + d, d), then E[ν] = 0
and Var[ν] = In. We show, that for d → ∞, BB distribution converges to normal
distribution.

Theorem 3.2.10. Let ν ∼ BB
n (
√

n + d, d). Then for d →∞, ν has Nn(0, I) distri-
bution.
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Proof. We show, that for d → ∞, the density function of BB
n (
√

n + d, d) converges
to the density function of Nn(0, I) distribution.

lim
d→∞

fBB
n
(x; r, d) = lim

d→∞
Γ(n+d

2
)

π
n
2 (n + d)

n
2 Γ(d

2
)

(
1− ‖x‖2

n + d

) d
2
−1

= lim
d→∞

Γ(n+d
2

)

(2π)
n
2 (n+d

2
)

n
2 Γ(d

2
)

(
1− ‖x‖2/2

(n + d)/2

)n+d
2
−n

2
−1

=
1

(2π)
n
2

e
‖x‖2

2 lim
d→∞

Γ(n+d
2

)

(n+d
2

)
n
2 Γ(d

2
)
.

For n fixed, if d →∞, then n+d
2
→∞. So

lim
d→∞

Γ(n+d
2

)

(n+d
2

)
n
2 Γ(d

2
)

= lim
n+d

2
→∞

Γ(n+d
2

)

(n+d
2

)
n
2 Γ(d

2
)

= lim
N→∞

Γ(N)

N
n
2 Γ(N − n

2
)
.

Using [1, 6.1.46, p.257] we get the limit equal 1.

Theorem 3.2.11. Let d > 0 be fixed and {ξn}∞n=k, ξn ∼ BB
n (
√

n + d, d) be a se-
quence of random vectors. Let {νn}∞n=k be such sequence of random vectors that
νn = (ξ(1)

n , ..., ξ(k)
n )′, where ξ(i)

n is ith component of vector ξn. Then νn has k-
dimensional normal distribution as n →∞.

Proof. Let B ∼ Bn
2

, d
2
and η ∼ Nn(0, I). Then by the definition of the distribution

BB we have
ξn =

√
n + d

√
B

η

‖η‖
It is easy to see, that ‖η‖2 ∼ χ2

n, thus ‖η‖2/(n + d)
P→ 1 as n → ∞. Using Lemma

1.7.1 at the page 7 and using the same asymptotic we get B
P→ 1 as n →∞.

3.3 A Class of Algorithms for Generating Random
Vectors on the Surface and in the Interior of the
Unit n-Ball

Let νk
m = (νk, ..., νk+m−1)

′ be an m-dimensional subvector of ν ∼ BB
n (r, d) and y1,k−1

be a realization of the first k − 1 components of vector ν. Then using Lemma 3.2.3,
Theorem 3.2.2 and Theorem 3.2.9 we get the conditional distribution

νk
m ∼ BB

m

(√
r2 − ‖y1,k−1‖2, d + n−m− (k − 1)

)
. (3.10)

Let n1, n2, ..., nj, n1 + n2 + ... + nj = n, be such we can we can generate from
BB

ni
, i = 1, ..., j, easily. Then we can generate components sequentially. An easy-to-

generate sequence we get if we choose, for example, ni = 2 for all i. This case is
described in the next subsection. Then we describe more ”exotic” cases.
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3.3.1 Application: Simulating Uniformly on the Unit n-Sphere
and n-Ball

Here we discuss a special case of our class of algorithms, when we generate components
in pairs. First we analyze generating on the surface on the n-ball.

If we generate components ν2i−1, ν2i, i = 1, 2, ..., n/2, simultaneously, then we have

(ν2i−1, ν2i)
′ ∼ BB

2

(√
1− ‖y1,2i−2‖2, n− 2i

)
, (3.11)

what is easy to generate, since

‖(ν2i−1, ν2i)
′‖ ∼

√
(1− ‖y1,2i−2‖2)(1− U

2
n−2i ),

and for the random direction we use the rejection method for the unit circle. This
enables us to generate uniformly on the unit n-sphere without using trigonometric
functions, exponentials or logarithms.

Remark : This algorithm was described by Marsaglia (see [11]) up to dimension 4.
Yang et al. (see [17]) generalized Marsaglia’s method for any dimension. Note that
it is only a special case of our class of algorithms.

Remark : Since

π
n
2

2nΓ(n
2

+ 1)
=

(π/4)
n
2

Γ(n
2

+ 1)
<

0.8
n
2

bn
2
c! ↘ 0, for n →∞

is the probability of successful realization from uniform distribution in the unit n-ball,
if we generate from n-cube, the rejection method is getting useless with increasing
dimension.

Algorithm 3.3.1. This algorithm generates a point X uniformly distributed on the
unit n-sphere without using trigonometric functions, exponentials or logarithms.

function: [X] = U_nSphere(n)
ρ := 1
for i = 1 : bn+1

2
c − 1

P1: generate A,B
iid∼ U(−1,1)

R2 := A2 + B2

if R2 > 1 goto P1
N1 := ρ(1− (R2)

2
n−2i ), N2 :=

√
N1/R2

X2i−1 := N2A, X2i := N2B
ρ := ρ−N1

end
if n is an odd number

generate A such that Pr(A = −1) = 0.5, Pr(A = 1) = 0.5
Xn :=

√
ρ ∗ A
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else
P2: generate A,B

iid∼ U(−1,1)

R2 := A2 + B2

if R2 > 1 goto P2
N :=

√
ρ/R2

Xn−1 := NA, Xn := NB
end

Now, suppose we want to generate uniformly in the unit n-ball. Applying idea in
formula (3.11) for sequential simulation, where the second parameter is equal n−2i+2,
we get the following algorithm.

Algorithm 3.3.2. This algorithm generates a point X uniformly distributed in the
unit n-ball without using trigonometric functions, exponentials or logarithms.

function: [X] = U_nBall(n)
ρ := 1
for i = 1 : bn+1

2
c − 1

P1: generate A,B
iid∼ U(−1,1)

R2 := A2 + B2

if R2 > 1 goto P1
N1 := ρ(1− (R2)

2
2+n−2i ), N2 :=

√
N1/R2

X2i−1 := N2A, X2i := N2B
ρ := ρ−N1

end
if n is an odd number

generate A ∼ U(−1,1)

Xn :=
√

ρ ∗ A
else
P2: generate A,B

iid∼ U(−1,1)

R2 := A2 + B2

if R2 > 1 goto P2
N :=

√
ρ

Xn−1 := NA, Xn := NB
end

3.3.2 Special Cases

Here we describe some other special cases of our class of algorithms.

Example 3.3.3 (Generating uniformly on the surface of the 4-ball). To generate on
the surface of the unit 4-ball we choose sequential method as follows: first we generate
the first two components, then the third and finally the fourth one. Using formula
(3.10) we get:

1. Generate (x1, x2)
′ ∼ UB2 using rejection method
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2. Generate U ∼ U(0,1) and set x3 =
√

1− x2
1 − x2

2 cos(πU) (note that BB
1 (1, 1) is

the arcsine distribution. Using the inverse transform theorem we get the relation
for x3)

3. Set x4 = ς
√

1− x2
1 − x2 − x2

3, where ς is a random sign

Then x is uniformly distributed on the surface of the unit 4-sphere.

Example 3.3.4 (Generating uniformly in the interior of the 4-ball). To generate
in the interior of the unit 4-ball we generate the first two components and then we
generate the last two components. We have

1. Generate (y1, y2)
′ ∼ UB2 and (y3, y4)

′ ∼ UB2 using rejection method and U ∼
U(0,1)

2. Set (x1, x2)
′ = U1/4(y1, y2)

′

3. Set (x3, x4)
′ =

√
1− x2

1 − x2
2(y3, y4)

′

Then x is uniformly distributed in the interior of the unit 4-sphere.

Example 3.3.5 (Generating uniformly on the surface of the 5-ball). To get a random
vector uniformly distributed on the surface of the unit 5-ball we generate the first
component, then the second and third component simultaneously, then the fourth and
the fifth component.

1. Generate U1, U2 ∼ U(0,1) and a random sign ς1 and set x1 = ς1U1U
1/3
2 (the

product of the two uniformly distributed random variables comes from formula
(1.3) at the page 10)

2. Generate (y1, y2)
′ ∼ UB2 and set (x2, x3)

′ =
√

1− x2
1(y1, y2)

′

3. Generate V ∼ U(0,1) and set x4 =
√

1− x2
1 − x2

2 − x2
3 cos(πV )

4. x5 = ς2
√

1− x2
1 − x2

2 − x2
3 − x2

4, where ς2 is a random sign

Then x is uniformly distributed on the surface of the unit 5-sphere.

Example 3.3.6 (Generating uniformly in the interior of the 5-ball). To get a random
vector uniformly distributed in the interior of the unit 5-ball we generate the first three
components and then we generate the last two components. The result is similar to
the case of the unit 4-ball.

1. Generate (y1, y2, y3)
′ ∼ UB3 and (y4, y5)

′ ∼ UB2 using rejection method and
U ∼ U(0,1)

2. Set (x1, x2, x3)
′ = U1/5(y1, y2, y3)

′

3. Set (x4, x5) =
√

1− x2
1 − x2

2 − x2
3(y4, y5)

′

Then x is uniformly distributed in the interior of the unit 5-sphere.



Chapter 4

Comparing the Efficiency of the New
Generators with Classic Generators
from Uniform Distribution on the
Unit n-Sphere and in the Unit n-Ball

4.1 Simulation from the Unit n-Sphere

In this section we compare the efficiency of the generator described by Algorithm
3.3.1 (C++ source code available in Subsection 5.4.2) with a classic algorithm

ξ

‖ξ‖ , ξ ∼ Nn(0, I), (4.1)

where we used Box-Muller generator for simulating standard normal variables (C++
source code available in Subsection 5.4.1). For appropriate comparison we used pro-
gramming language C++1. The Results are exhibited in the figure 4.1 and the
corresponding times are available in Table 5.1 in Appendix.

The result shows that the time difference increases linearly with increasing di-
mension. The new generator needs significantly less simulation time than the classic
generator (i.e. based on (4.1) using the Box-Muller method for generating normal
variates).

4.2 Simulation from the Unit n-Ball

To simulate uniformly in the unit n-ball a couple of methods are available. We
compare the following methods:

1We used Bloodshed DevC++ version 4.9.9.2. See http://www.bloodshed.net for more informa-
tion. Application was programmed as Console application.

33
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Figure 4.1: Comparing the efficiency of the classic (thin line) and the new (thick line)
algorithm for generating uniformly on the unit n-sphere. Horizontal axis represents
the dimension of the vector and vertical axis the simulation time of 106 vectors. The
simulation test is done in C++. Times are available in Table 5.1 in Appendix.

0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

18

20

Dimension

T
im

e 
(s

ec
o

n
d

s)

 

 

M1
M2
M3
M4

Figure 4.2: Comparing the efficiency of M1–M4 for generating uniformly in the unit
n-ball. Horizontal axis represents the dimension of the vector and vertical axis the
simulation time of 106 vectors. The simulation test is done in C++. Times are
available in Table 5.2 in Appendix.

M1 The classic algorithm

ν = U1/n ξ

‖ξ‖ ∼ UBn , U ∼ U(0,1), ξ ∼ Nn(0, I),

(C++ source code available in Subsection 5.4.3 and R code in Subsection 5.4.4)

M2 The classic algorithm upgraded using Algorithm 3.3.1

ν = U1/nη ∼ UBn , U ∼ U(0,1), η ∼ USn ,

(C++ source code available in Subsection 5.4.5)
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Figure 4.3: Comparing the efficiency of M1 (thin line) and M3 (thick line) algorithm
for generating uniformly in the unit n-ball. Horizontal axis represents the dimension
of the vector and vertical axis the simulation time of 105 vectors. The simulation test
is done in R. Times are available Table 5.3 in Appendix.

M3 The new algorithm, a result of Corollary 3.2.5

ν =
ξ√

(
∑n

i=1 ξ2
i ) + η2

1 + η2
2

∼ UBn , ξ ∼ Nn(0, I), η1, η2 ∼ N(0, 1), (4.2)

(C++ source code available in Subsection 5.4.6 and R code in Subsection 5.4.7)

M4 The new algorithm described in Algorithm 3.3.2. (C++ source code available
in Subsection 5.4.8)

The figure 4.2 is depicts a dependence of the times of simulations for each method for
different dimensions (the times are available in Table 5.2 in Appendix). Methods M2
and M4, which use the sequential simulation of the vector’s components, are more
efficient than M1 and M3, even for higher dimensions. The method M4 has slight,
but noticeable advantage over M2.

Now we focus our attention to the methods M1 and M3. Even though the method
M1 was as efficient as M3, we compared both methods using the programming lan-
guage of the R software environment2. The difference between C++ and R is that
R ”takes” a realization from ”somewhere” (a pre-compiled function), which stands (in
a sense) for a physical N(0, 1) generator. The results (see fig. 4.3 and Table 5.3 in
Appendix) show that M3 is, from this point of view, more efficient than M1.

2We used R version 2.8.1 by The R Foundation for Statistical Computing. See http://www.r-
project.org for more information.
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Appendix

5.1 n-Spherical Coordinates [3, p.65]

Let be In be given basis, i.e. Cartesian coordinate system, and x is a vector of norm
r with components xi with respect to this basis. Then

x1 = r cos(φ1),

xj = r cos(ψj)

j−1∏

k=1

sin(φk), j = 2, ..., n− 2,

xn−1 = r sin(θ)
n−2∏

k=1

sin(φk),

xn = r sin(θ)
n−2∏

k=1

sin(φk),

where 0 ≤ φj ≤ π, j = 1, ..., n − 2; 0 ≤ θ < 2π; 0 ≤ r < ∞. The Jacobian of this
transformation is

J = rn−1

n−2∏

k=1

sink(φn−1−k).

5.2 Formulas from [1]

[1, 15.1.8, p.556]:
2F1(a, b; b; z) = (1− z)−a,

[1, 15.3.1, p.558]:

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt, <[c] > <[b] > 0,

[1, 6.1.46, p.257]:

lim
n→∞

nb−a Γ(n + a)

Γ(n + b)
= 1.
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5.3 Herschel–Maxwell Characterization of the Nor-
mal Distribution

The characterization states, that if a random vector ξ is rotationally invariant (i.e.
ξ

d∼ Qξ, Q be orthogonal) and components ξi, ξj are independent, i 6= j, then the
distribution of ξ is the multidimensional normal with mean 0.

5.4 Source Codes

5.4.1 The Classic Method for USn
(C++)

int i, n=3, k=n/2;
double A, B, R2, NORMAL[n], P, NN=0;
for(i=1;i<=k;i++){
R2=2;
while(R2>1){

A=2*drand()-1;
B=2*drand()-1;
R2=A*A+B*B;

}
P=sqrt(-2*log(R2)/R2);
NORMAL[2*i-2]=P*A;
NORMAL[2*i-1]=P*B;
NN=NN+P*P*(A*A+B*B);

}
if(n%2){
R2=2;
while(R2>1){

A=2*drand()-1;
B=2*drand()-1;
R2=A*A+B*B;

}
P=sqrt(-2*log(R2)/R2)
NORMAL[n-1]=P*A;
NN=NN+P*P*A*A;

}
for(i=1;i<=n;i++)
NORMAL[i-1]=NORMAL[i-1]/sqrt(NN);

5.4.2 Algorithm 3.3.1 (C++)

int i, n=3, k=(n+1)/2;
double RADIUS=1, A, B, R2, POINT[n], SQ_OF_NORM, P, S;
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for(i=1; i<=k-1; i++){
R2=2;
while(R2>1){
A=2*drand()-1;
B=2*drand()-1;
R2=A*A+B*B;

}
SQ_OF_NORM=RADIUS*(1-pow(R2,2.0/(n-2*i)));
P=sqrt(SQ_OF_NORM/R2);
POINT[2*i-2]=P*A;
POINT[2*i-1]=P*B;
RADIUS=RADIUS-SQ_OF_NORM;

}
if(n%2){

S=0.5-drand();
POINT[n-1]=sqrt(RADIUS)*S/fabs(S);

}
else{

R2=2;
while(R2>1){
A=2*drand()-1;
B=2*drand()-1;
R2=A*A+B*B;
}

P=sqrt(RADIUS/R2);
POINT[n-2]=P*A;
POINT[n-1]=P*B;

}

5.4.3 M1 (C++)

int i, n=3, k=n/2;
double A, B, R2, T, NORMAL[n], P, NN=0;
T=pow(drand(),1.0/n);
for(i=1;i<=k;i++){

R2=2;
while(R2>1){
A=2*drand()-1;
B=2*drand()-1;
R2=A*A+B*B;

}
P=sqrt(-2*log(R2)/R2);
NORMAL[2*i-2]=T*P*A;
NORMAL[2*i-1]=P*B;
NN=NN+P*P*(A*A+B*B);
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}
if(n%2){
R2=2;
while(R2>1){

A=2*drand()-1;
B=2*drand()-1;
R2=A*A+B*B;

}
P=sqrt(-2*log(R2)/R2);
NORMAL[n-1]=P*A;
NN=NN+P*P*A*A;

}
for(i=1;i<=n;i++)
NORMAL[i-1]=NORMAL[i-1]/sqrt(NN);

5.4.4 M1 (R)

n<-3
xi<-rnorm(n)
X<-(runif(1))^(1/n)*xi/sqrt(sum(xi^2))

5.4.5 M2 (C++)

int i, n=3, k=(n+1)/2;
double RADIUS=1, A, B, R2, POINT[n], SQ_OF_NORM, P, S, T;
T=pow(drand(),1.0/n);
for(i=1; i<=k-1; i++){
R2=2;
while(R2>1){

A=2*drand()-1;
B=2*drand()-1;
R2=A*A+B*B;

}
SQ_OF_NORM=RADIUS*(1-pow(R2,2.0/(n-2*i)));
P=sqrt(SQ_OF_NORM/R2);
POINT[2*i-2]=T*P*A;
POINT[2*i-1]=T*P*B;
RADIUS=RADIUS-SQ_OF_NORM;

}
if(n%2){
S=0.5-drand();
POINT[n-1]=T*sqrt(RADIUS)*S/fabs(S);

}
else{
R2=2;
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while(R2>1){
A=2*drand()-1;
B=2*drand()-1;
R2=A*A+B*B;

}
P=sqrt(RADIUS/R2);
POINT[n-2]=T*P*A;
POINT[n-1]=T*P*B;

}

5.4.6 M3 (C++)

int i, n=3, k=k/2;
double A, B, R2, NORMAL[n], P, NN=0;
for(i=1;i<=k;i++){

R2=2;
while(R2>1){
A=2*drand()-1;
B=2*drand()-1;
R2=A*A+B*B;

}
P=sqrt(-2*log(R2)/R2);
NORMAL[2*i-2]=P*A;
NORMAL[2*i-1]=P*B;
NN=NN+P*P*(A*A+B*B);

}
if(n%2){

R2=2;
while(R2>1){
A=2*drand()-1;
B=2*drand()-1;
R2=A*A+B*B;

}
NORMAL[n-1]=sqrt(-2*log(R2)/R2)*A;
NN=NN+P*P*A*A;

}
NN=NN-2*log(drand());
for(i=1;i<=n;i++)

NORMAL[i-1]=NORMAL[i-1]/sqrt(NN);

5.4.7 M3 (R)

n<-3
xi<-rnorm(n+2)
X<-xi[1:n]/sqrt(sum(xi^2))
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5.4.8 M4 (C++)

int i, n=3, k=(n+1)/2;
double RADIUS=1, A, B, R2, POINT[n], SQ_OF_NORM, P, S, T;
for(i=1; i<=k-1; i++){
R2=2;
while(R2>1){

A=2*drand()-1;
B=2*drand()-1;
R2=A*A+B*B;

}
SQ_OF_NORM=RADIUS*(1-pow(R2,2.0/(n+2-2*i)));
P=sqrt(SQ_OF_NORM/R2);
POINT[2*i-2]=P*A;
POINT[2*i-1]=P*B;
RADIUS=RADIUS-SQ_OF_NORM;

}
if(n%2){
S=2*drand()-1;
POINT[n-1]=sqrt(RADIUS)*S;

}
else{
R2=2;
while(R2>1){

A=2*drand()-1;
B=2*drand()-1;
R2=A*A+B*B;

}
P=sqrt(RADIUS);
POINT[n-2]=P*A;
POINT[n-1]=P*B;

}
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5.5 Tables

n New Classic
2 0.329 0.785
3 0.812 1.571
4 0.854 1.591
5 1.233 2.148
6 1.356 2.311
7 1.786 3.017
8 1.859 3.127
9 2.326 3.739
10 2.488 3.913
11 2.829 4.482
12 2.869 4.636
13 3.264 5.219
14 3.395 5.315
15 3.834 6.047
16 3.933 6.198
17 4.399 6.747
18 4.478 6.880
19 4.810 7.568
20 4.915 7.747
21 5.327 8.312
22 5.468 8.437
23 5.971 9.192
24 6.100 9.302
25 6.423 10.028
26 6.632 10.009

n New Classic
27 7.004 10.824
28 7.071 10.838
29 7.545 11.307
30 7.519 11.424
31 7.958 12.143
32 8.132 12.286
33 8.500 12.947
34 8.675 13.041
35 9.031 13.664
36 9.147 13.848
37 9.538 14.308
38 9.592 14.523
39 10.027 15.191
40 10.129 15.449
41 10.682 15.871
42 10.990 17.064
43 11.240 16.941
44 12.313 19.673
45 11.642 18.052
46 11.679 17.607
47 12.214 18.705
48 12.294 18.597
49 13.476 20.506
50 12.905 19.241

Table 5.1: Comparison of the new and the classic algorithm for generating from
uniform distribution on the unit n-sphere.
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n M1 M2 M3 M4
2 0.998 0.551 0.954 0.271
3 1.654 0.938 1.560 0.702
4 1.770 1.074 1.736 0.808
5 2.416 1.450 2.382 1.213
6 2.544 1.557 2.508 1.332
7 3.171 2.004 3.106 1.698
8 3.301 2.044 3.279 1.800
9 4.013 2.506 3.999 2.336
10 4.137 2.597 4.057 2.329
11 4.738 2.939 4.618 2.721
12 4.854 3.087 4.818 2.809
13 5.489 3.465 5.396 3.245
14 5.612 3.590 5.677 3.414
15 6.254 4.003 6.237 3.781
16 6.403 4.178 6.339 3.863
17 7.101 4.561 6.973 4.278
18 7.157 4.605 7.148 4.444
19 7.860 5.062 7.908 4.847
20 8.148 5.159 7.919 4.929
21 8.725 5.522 8.476 5.299
22 8.878 5.629 8.688 5.376
23 9.215 5.991 9.289 5.725
24 9.554 6.101 9.500 5.836
25 10.170 6.566 9.962 6.306
26 10.329 6.602 10.198 6.356

n M1 M2 M3 M4
27 11.967 7.569 12.124 6.977
28 11.459 7.163 11.045 6.829
29 11.967 7.972 12.166 7.473
30 11.821 7.806 11.793 7.485
31 12.380 8.008 12.327 7.741
32 12.595 8.113 12.548 7.839
33 13.113 8.628 13.059 8.330
34 13.357 8.659 13.281 8.415
35 13.983 9.050 13.927 8.838
36 14.001 9.187 14.024 8.826
37 14.751 9.649 14.691 9.350
38 14.848 9.750 14.789 9.417
39 15.387 10.108 15.336 9.697
40 15.514 10.178 15.509 9.816
41 16.207 10.633 16.169 10.231
42 16.360 10.645 16.286 10.399
43 17.130 11.464 16.980 10.689
44 17.242 11.346 17.034 10.794
45 17.822 11.613 17.677 11.331
46 17.936 11.715 17.891 11.449
47 18.550 12.157 18.460 11.887
48 18.551 12.309 18.627 11.889
49 19.394 12.573 19.157 12.344
50 19.431 12.802 19.359 12.553

Table 5.2: Comparison of M1, M2, M3 and M4.
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n M1 M3
2 2.153 1.607
3 2.215 1.685
4 2.278 1.732
5 2.324 1.778
6 2.387 1.872
7 2.402 1.888
8 2.418 1.903
9 2.480 1.966
10 2.527 1.996
11 2.606 2.075
12 2.652 2.074
13 2.636 2.152
14 2.668 2.200
15 2.714 2.293
16 2.854 2.278
17 2.933 2.371
18 2.917 2.434
19 2.980 2.496
20 3.010 2.527
21 3.074 2.558
22 3.166 2.605
23 3.198 2.621
24 3.261 2.761
25 3.245 2.730
26 3.307 2.745

n M1 M3
27 3.338 2.824
28 3.417 2.917
29 3.416 2.933
30 3.463 3.026
31 3.495 2.980
32 3.588 3.042
33 3.619 3.134
34 3.635 3.182
35 3.682 3.214
36 3.713 3.229
37 3.790 3.260
38 3.869 3.307
39 3.838 3.370
40 3.869 3.416
41 3.963 3.463
42 4.009 3.495
43 3.993 3.510
44 4.025 3.541
45 4.087 3.635
46 4.134 3.681
47 4.197 3.713
48 4.180 3.729
49 4.212 3.775
50 4.306 3.837

Table 5.3: Comparison of M1 and M3.
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