V rámci semináře Ústavu termomechaniky prosloví prof. RNDr. Zdeněk Dostál, DSc. z Fakulty elektrotechniky a informatiky
Vysoké školy báňské — Technické univerzity Ostrava přednášku s názvem "Škálovatelné algoritmy pro kontaktní problémy s miliardami neznámých". Pozvánka s abstraktem přednášky je v příloze tohoto oznámení. Všichni zájemci jsou srdečně zváni.
Místo konání:
Ústav termomechaniky (posluchárna B), Dolejškova 5, 182 00 Praha 8
For the past 40 years computer scientists generally believed that NP-complete problems are intractable. In particular, Boolean satisfiability (SAT), as a paradigmatic NP-complete problem, has been considered to be intractable. Over the past 20 years, however, there has been a quiet, but dramatic, revolution, and very large SAT instances are now being solved routinely as part of software and hardware design.
In this talk I will review this amazing development and show that we can leverage SAT solving to accomplish other Boolean reasoning tasks. Counting the the number of satisfying truth assignments of a given Boolean formula or sampling such assignments uniformly at random are fundamental computational problems in computer science with numerous applications. While the theory of these problems has been thoroughly investigated in the 1980s, approximation algorithms developed by theoreticians do not scale up to industrial-sized instances. Algorithms used by the industry offer better scalability, but give up certain correctness guarantees to achieve scalability. We describe a novel approach, based on universal hashing and Satisfiability Modulo Theory, that scales to formulas with hundreds of thousands of variable without giving up correctness guarantees.
Místo konání:
Karolinum UK, Celetná 20, Praha 1, Modrá posluchárna, druhé patro
Další ze série přednášek pro širokou veřejnost, které mají za cíl ukázat na uplatnění matematiky v nejrůznějších oblastech lidské činnosti. Doc. Vojtěch Kolman z Filosofické fakulty Univerzity Karlovy v Praze se bude v přednášce zabývat otázkou, jakou roli ve vztazích mezi matematikou a filosofií hrají Platón a Kant coby nejvlivnější postavy filosofie matematiky po naši dobu a co je takto vlivnými činí, např. ve srovnání s filosofy, kteří byli jako Descartes či Leibniz také mimořádně významnými matematiky.
Místo konání:
Refektář budovy Matematicko-fyzikální fakulty UK, Praha 1, Malostranské nám. 25
Náboj je mezinárodní matematická soutěž pro pětičlenné týmy středoškoláků, které reprezentují jednotlivé školy. Celá soutěž trvá 120 minut, během nichž se týmy snaží na jednom ze soutěžních míst vyřešit co nejvíce příkladů.
Místo konání:
současně v Praze, Opavě, Bratislavě, Košicích, Pasově, Linci, Krakově a Budapešti.
In the middle of 1990’s, Floer initiated what is now called Floer (co)homology in sympletic geometry and gauge theory. The theory has been developed since then. After giving a bit of background, I would like to present Floer theory for Lagrangian submanifolds based on our joint works with K. Fukaya, Y.-G. Oh and H. Ohta. If time allows, I also speak on generation criterion of Fukaya category based on our joint work with M. Abouzaid, K. Fukaya, Y.-G. Oh and H. Ohta.
Místo konání:
MFF UK, Malostranské nám. 25, 118 00 Praha 1, posluchárna S5, druhé patro
This talk is about a curious phenomenon, which concerns the reliable estimation of principal components in the face of severe corruptions. Here, the scientist is given a data matrix which is the sum of an approximately low-rank matrix and a sparse matrix modeling corrupted entries. In addition, many entries may be missing. Hence, we have a blind de-mixing problem in which the goal is to recover the low-rank structure and find out which entries have been corrupted. We present a novel approach to this problem with very surprising performance guarantees as well as a few applications in computer vision and biomedical imaging, where this technique opens new perspectives.
Místo konání:
MFF UK, Malostranské nám. 25, 118 00 Praha 1, posluchárna S5, druhé patro
The ternary Goldbach conjecture (1742) asserts that every odd number greater than 5 can be written as the sum of three prime numbers. Following the pioneering work of Hardy and Littlewood, Vinogradov proved (1937) that every odd number larger than a constant C satisfies the conjecture. In the years since then, there has been a succession of results reducing C, but only to levels much too high for a verification by computer up to C to be possible (C>10^1300). (Works by Ramare and Tao solved the corresponding problems for six and five prime numbers instead of three.) My recent work proves the conjecture. We will go over the main ideas of the proof.
Místo konání:
MFF UK, Malostranské nám. 25, 118 00 Praha 1, posluchárna S5, druhé patro
Prof. RNDr. Michal Křížek, DrSc., z Matematického ústavu AV ČR přednese další ze série přednášek, kterou pod názvem Matematika a ... pořádá Česká matematická společnost.
Abstrakt: Pražský orloj vznikl v době mistra Jana Husa kolem roku 1410. Jeho mechanicko-matematický model navrhl Jan Ondřejův, zvaný Šindel, který se zabýval matematikou a astronomií na pražské univerzitě. Genialitu tehdejších hodinářů budeme demonstrovat na konstrukci zařízení pro přesnou regulaci úderů zvonu a řadě dalších funkcí orloje, který vlastně představuje jeden z prvních analogových počítačů.
Místo konání:
Refektář budovy Matematicko-fyzikální fakulty UK, Praha 1, Malostranské nám. 25
Kromě přednášek na zajímavá témata nabízíme mladým českým a slovenským vědcům a studentům příležitost neformálně pobesedovat s kolegy žijícími v cizině.
The stratified tree, also called van Emde Boas tree, is a data structure implementing the full repertoire of instructions manipulating a single subset of a finite ordered universe of size u with the processing time per instruction $O(\log\log(u))$. Hence it improves upon the traditional comparison based tree structures for dense subsets. Examples exist where this improvement helps to speed-up algorithmic solutions of real problems; such applications can be found for example in graph algorithms, computational geometry and forwarding of packets on the internet.
This data structure was invented during a three months postdoc residence at Cornell University in the fall of 1974. In my talk I want to describe the historical backgrounds against which the stratified trees were discovered and implemented.
Místo konání:
MFF UK, Malostranské nám. 25, 118 00 Praha 1, refektář, první patro
V Matematickém ústavu AV ČR se 31. října 2014 od 9:30 koná další ze série reprezentačních přednášek organizovaných každoročně na počet největší osobnosti české matematiky 20. století prof. Eduarda Čecha. Na téma Modern Geometry: from Local to Global, from Smooth to Rough, from Static to Dynamic bude přednášet prof. Jean-Pierre Bourguignon, přední odborník v oblasti diferenciální geometrie, dlouholetý ředitel Institut des Hautes Études Scientifiques, druhý předseda Evropské matematické společnosti a od letošního roku předseda Evropské výzkumné rady (ERC).
In 1973 the author showed that if a differentiable function f on a Banach space X is bounded from below, there is always a sequence x_n of points in X such that f(x_n) goes to the infimum of f over X and the derivative f'(x_n) goes to zero. I will recall this result, and give some applications ranging from the easy (fixed point theorems, inverse function theorems) to the difficult (convex functions are differentiable almost everywhere, the Hopf-Rinow theorem in infinite dimension). I will conclude by stating that the sequence x_n can also be chosen so that the Hessian f''(x_n) is non-negative in the limit, and give some applications to PDEs.
Místo konání:
MFF UK, Malostranské nám. 25, 118 00 Praha 1, refektář, první patro
od 11:00 registrace
oběd
13:30 zahájení
14:00 Peter Takáč: Základní finanční produkty a jejich matematické modelování
15:30 přestávka s občerstvením
16:00–18:00 valné shromáždění ČMS
pá 6.6.
09:00 Pavel Pudlák: Nedeterminismus, náhodnost a dolní odhady složitosti výpočtů
10:30 přestávka s občerstvením
11:00 Daniel Ševčovič: Minimalizácia izoperimetrického pomeru v relatívnej Finslerovej geometrii
12:30 oběd
13:30 Luboš Pick: O optimální volbě partnera a dalších úskalích matematikova života
We shall discuss exponential sums sum_n exp(2i pi tn). In particular, those with tn= an^2 where a is a real irrational
coefficient. A visual analysis of these sums reveals the arithmetical properties of the constant a. If time permits we show
M. Berry's application to diffraction.
Místo konání:
MFF UK, Malostranské nám. 25, 118 00 Praha 1, posluchárna S5, druhé patro
Vůdčím principem při axiomatizaci teorie množin bylo zachovat co nejvíce vlastností konečných množin také pro nekonečné množiny. Dnes, kdy nám chybí metody k řešení problémů v teorii složitosti, děláme v jistém smyslu opak: vytváříme domněnky o konečných strukturách na základě podobných nekonečných struktur. Například naše víra, že P ≠ NP se hlavně opírá o skutečnost, že rekurzivně spočetné množiny nejsou rekurzivní.
The workshop's main focus is on graph coverings and their applications in different areas of theoretical computer science such as models of computation, computational complexity, and algebraic graph theory. The aim of the workshop is to bring together researchers working on these diverse ends of graph coverings, to introduce their approaches and results to one another, and to try to pursue joint research combining these areas. Towards this end we plan a small number of survey talks, several open problem sessions, and ample time for discussions and problem solving...
Jde o desátou prednášku konanou v rámci cyklu reprezentačních přednášek organizovaných na počest prof. Eduarda Čecha, jednoho z nejvýznamnějších českých matematiků novodobé historie a zakladatele Matematického ústavu AV ČR.
Abstract
Místo konání:
Velká posluchárna Matematického ústavu AV ČR, Žitná 25, Praha 1.
Amenability of groups is a concept introduced by J. von Neumann in his seminal article (1929) to explain the so-called Banach-Tarski paradox. It is easily shown that the free groups F on two generators are non-amenable. It follows that the countable discrete groups containing F are non-amenable. von Neumann's problem asked whether the converse holds true. In the 80's Ol'shanskii showed that his Tarski monsters are counter-examples. However, in order to extend certain results from groups containing F to any non-amenable countable group Gamma, it may be enough to know that Gamma contains F in a more dynamical sense. Namely, to know that Gamma admits an ergodic probability measure preserving action on some standard space for which the orbits can be partitioned into orbits of some ergodic free action of F.
Místo konání:
MFF UK, Malostranské nám. 25, 118 00 Praha 1, refektář, první patro
Ředitel Ústavu pro jazyk český AV ČR doc. RNDr. Karel Oliva, Dr., ve své přednášce představí formalizovaný přístup k vyhledávání gramatických chyb v českém textu, a to od prvotních nápadů jak k problému vůbec přistupovat přes matematickou teorii „vždy nesprávných" vět a z ní plynoucí praktické metody vyhledávání a popisu takových konstrukcí až po funkční počítačovou aplikaci a význam určitých vedlejších efektů celého přístupu pro standardní jazykovědu. Přednášku pro širokou veřejnost pořádá v rámci cyklu „Matematika a ..." Česká matematická společnost, sekce JČMF.
Místo konání:
Refektář budovy MFF UK Praha 1, Malostranské nám. 25